Comparative secretome analyses of two Trichoderma reesei RUT-C30 and CL847 hypersecretory strains
نویسندگان
چکیده
BACKGROUND Due to its capacity to produce large amounts of cellulases, Trichoderma reesei is increasingly been researched in various fields of white biotechnology, especially in biofuel production from lignocellulosic biomass. The commercial enzyme mixtures produced at industrial scales are not well characterized, and their proteinaceous components are poorly identified and quantified. The development of proteomic methods has made it possible to comprehensively overview the enzymes involved in lignocellulosic biomass degradation which are secreted under various environmental conditions. RESULTS The protein composition of the secretome produced by industrial T. reesei (strain CL847) grown on a medium promoting the production of both cellulases and hemicellulases was explored using two-dimensional electrophoresis and MALDI-TOF or LC-MS/MS protein identification. A total of 22 protein species were identified. As expected, most of them are potentially involved in biomass degradation. The 2D map obtained was then used to compare the secretomes produced by CL847 and another efficient cellulolytic T. reesei strain, Rut-C30, the reference cellulase-overproducing strain using lactose as carbon source and inducer of cellulases. CONCLUSION This study provides the most complete mapping of the proteins secreted by T. reesei to date. We report on the first use of proteomics to compare secretome composition between two cellulase-overproducing strains Rut-C30 and CL847 grown under similar conditions. Comparison of protein patterns in both strains highlighted many unexpected differences between cellulase cocktails. The results demonstrate that 2D electrophoresis is a promising tool for studying cellulase production profiles, whether for industrial characterization of an entire secretome or for a more fundamental study on cellulase expression at genome-wide scale.
منابع مشابه
Comparative secretome analysis of Trichoderma asperellum S4F8 and Trichoderma reesei Rut C30 during solid-state fermentation on sugarcane bagasse
BACKGROUND The lignocellulosic enzymes of Trichoderma species have received particular attention with regard to biomass conversion to biofuels, but the production cost of these enzymes remains a significant hurdle for their commercial application. In this study, we quantitatively compared the lignocellulolytic enzyme profile of a newly isolated Trichoderma asperellum S4F8 strain with that of Tr...
متن کاملQuantitative secretomic analysis of Trichoderma reesei strains reveals enzymatic composition for lignocellulosic biomass degradation.
Trichoderma reesei is a mesophilic, filamentous fungus, and it is a major industrial source of cellulases, but its lignocellulolytic protein expressions on lignocellulosic biomass are poorly explored at present. The extracellular proteins secreted by T. reesei QM6a wild-type and hypercellulolytic mutant Rut C30 grown on natural lignocellulosic biomasses were explored using a quantitative proteo...
متن کاملA β-glucosidase hyper-production Trichoderma reesei mutant reveals a potential role of cel3D in cellulase production
BACKGROUND The conversion of cellulose by cellulase to fermentable sugars for biomass-based products such as cellulosic biofuels, biobased fine chemicals and medicines is an environment-friendly and sustainable process, making wastes profitable and bringing economic benefits. Trichoderma reesei is the well-known major workhorse for cellulase production in industry, but the low β-glucosidase act...
متن کاملKinetic transcriptome analysis reveals an essentially intact induction system in a cellulase hyper-producer Trichoderma reesei strain
BACKGROUND The filamentous fungus Trichoderma reesei is the main industrial cellulolytic enzyme producer. Several strains have been developed in the past using random mutagenesis, and despite impressive performance enhancements, the pressure for low-cost cellulases has stimulated continuous research in the field. In this context, comparative study of the lower and higher producer strains obtain...
متن کاملFactors influencing glycosylation of Trichoderma reesei cellulases. II: N-glycosylation of Cel7A core protein isolated from different strains.
A systematic analysis of the N-glycosylation of the catalytic domain of cellobiohydrolase I (Cel7A or CBH I) isolated from several Trichoderma reesei strains grown in minimal media was performed. Using a combination of chromatographic, electrophoretic, and mass spectrometric methods, the presence of glucosylated and phosphorylated oligosaccharides on the three N-glycosylation sites of Cel7A cor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biotechnology for Biofuels
دوره 1 شماره
صفحات -
تاریخ انتشار 2008